

Logic16

Time Tag Unit

User Manual

Version 3.0

Logic16 Time Tag Unit

User Manual

Version 3.0

Universal Quantum Devices

295 Hagey Boulevard, 1st Floor, West Entrance, Waterloo, ON, Canada N2L 6R5

Phone: +1 (519) 778-9146 ∣ Email: info@uqdevices.com ∣ Web: www.uqdevices.com

In collaboration with:

mailto:info@uqdevices.com
http://www.uqdevices.com/
http://www.uqdevices.com/
http://www.dotfast-consulting.at/

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 3

Table of contents

SECTION 1 INTRODUCTION 4

1.1 SUPPORT 6

SECTION 2 QUICK START GUIDE 7

SECTION 3 HARDWARE SPECIFICATIONS 8

3.1 TECHNICAL SPECIFICATIONS 8

3.2 SAFETY OF OPERATION 9

3.3 DEVICE FEATURES 11

3.3.1 ACTIVE EDGE AND THRESHOLD DETECTION 11

3.3.2 TIME TAGGER MODE 11

3.3.3 LOGIC MODE 15

3.3.4 DELAY 17

3.3.5 FUNCTION GENERATOR 17

3.3.6 EXTERNAL CLOCK INPUT 17

3.4 FIRMWARE UPDATE/CHANGE 18

SECTION 4 SOFTWARE INTERFACE 20

4.1 DRIVERS INSTALLATION 20

4.1.1 WINDOWS 8 OR HIGHER 20

4.1.2 PRE WINDOWS 8 20

4.1.3 LINUX 20

4.2 GRAPHICAL USER INTERFACE 21

4.2.1 TIMETAG EXPLORER 21

4.2.2 UQD LOGIC16 CORRELATION VIEWER 31

4.3 APPLICATION PROGRAMMING INTERFACE (API) 34

4.3.1 .NET SETUP 34

4.3.2 C++ SETUP 37

4.3.3 API METHODS 39

4.3.4 SAMPLE CODES 53

SECTION 5 FAQ 58

SECTION 6 REVISION HISTORY 60

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 4

Section 1

Introduction
Logic16 is a versatile time tagger and logic correlation unit made especially for analyzing photon detection

signals in multi-photon correlation counting and time-resolved signal analysis.

Logic16 operates in two distinct modes for measurement flexibility: Logic Mode and Time Tagger Mode.

Logic Mode performs on-board coincidence (pattern) counting and can internally process all possible

patterns for the 16 inputs, simultaneously. The patterns to be counted are defined by indicating for each

input whether or not an active signal edge should appear, or if the input should be ignored. In Logic Mode,

the unit can also output TTL pulses triggered by detections of user-selected coincidence patterns. Output

channels are distinct from input channels. Coincidence counting can be performed alongside the use of

the pattern-triggered outputs. Since all time-correlation processing is performed internally, it can be used

even with small, low-power computers.

Time Tagger Mode time tags photon events – in other words, it records the input channel and event time

when signals are detected. In Time Tagger Mode it is possible to perform:

continuous time tagging - time tag each event detected

gated time tagging - condition time tagging to occur only when signals appear on a specific input

time tag filter - time tag events only when they appear in groups

- use for time-of-flight1 measurements with respect to a fast pump signal2

- use to reduce data file size for long3 measurements

By employing the time tag filter it is possible for users to measure with sustained4 data rates up to 190

MHz. However, keep in mind that time tags can be processed on-board Logic16 faster than they can be

sent across the USB interface to the host PC. The time Tag Filter is thus useful for high rate signals when

only select events are of interest.

1 Or “time-of-arrival” (TOA)
2 For example, a 76 MHz Ti-Sapphire laser
3 For example, on the order of days
4 In contrast to burst

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 5

Figure 1-I Summary of Logic16 hardware operations

Configurations

Logic16 has two different configurations. Configuration A has 16 input channels with a resolution of

156.25 ps time bin width while Configuration B has 8 operational input channels with a resolution of

78.125 ps time bin width. Unless requested, Configuration A is shipped as a default. It is easy to switch

between the two configurations using a user-supplied JTAG cable. See Section 3.3 for details.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 6

1.1 Support

To improve user experience, Universal Quantum Devices (UQD) provides a variety of support to help you

get started with Logic16. Included in this manual you will find a quick start guide, software installation tips

and detailed information about Logic16 operation. Programming examples are included on the Logic16

CD, which is available at www.uqdevices.com. On the website you will also find video tutorials.

The success of UQD and DotFAST consulting is based on tight interaction with our customers. In the case

you experience any problems, need clarifications or simply have an idea for improvement, contact us by

phone: +1 (519) 778-9146 or email: info@uqdevices.com.

Disclaimer: This product is subject to constant development and improvement. For latest drivers and

documentation please visit the website.

http://www.uqdevices.com/
mailto:info@uqdevices.com

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 7

Section 2

Quick Start Guide
This guide outlines basic steps to get started with Logic16. Refer to section 3.1 to identify ports and

connectors on the unit. Videos are available on the website for additional getting started support.

i Power the device

Connect Logic16 to a DC power supply (12 V @ ≥1.5 A) or a NIM crate (12 V @ 1.0 A

and -12V @0.4 A). The “Power” LED should turn blue.

ii Set up a connection

Connect Logic16 to your computer using the USB 2 cable supplied with your device.

iii Establish communication

Ensure software and program libraries are available on your host PC.5 Open the Time

Tag Explorer software and click connect. The “USB” LED should turn blue.

This quick start guide references the use of Time Tag Explorer. See section 4 to learn

about Logic16 Correlation Viewer or custom programming.

iv Connect to a signal

Connect one of the input channels to a photon detector using an SMA Cable.

Alternatively, simulate your signal using output 4 - a basic function generator6.

v Read tags or count patterns

Check the Read Tags box on the Time Tag Explorer Time Tag Tab and verify that time

tag differences appear in the GUI window. OR go to the Logic tab, check Use Logic

box and verify that counts appear in the GUI window under singles for the connected

input.

If you cannot see these signals, please check that your input thresholds on the input

tab are set appropriately for your signal.

5 Available at www.uqdevices.com/documentations or on the CD included with Logic16
6 Control the function generator on the “FG” tab of Time Tag Explorer – click the box beside “FG” to turn on

http://www.uqdevices.com/documentations

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 8

Section 3

Hardware Specifications

3.1 Technical specifications

Front-View

① Inputs SMA, 50Ω termination

② Outputs SMA, 50Ω termination

③ Power LED Blue when unit is connected to a power supply

④ USB LED Blue when unit has established a successful connection to host PC

⑤ Error LED Red when an error occurs during operation of the device

Note: All three LEDs light up briefly upon connection to the power supply. This indicates that the
power is on and the unit is booting.

⑥ USB port Connection for USB 2.0 cable provided.

Note: We recommend that you do not use a USB Hub in order to connect multiple units to your PC.
This will limit the data transfer rate of the device.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 9

Rear-View

⑦ DC power supply port +12 V @ 1.5 A

⑧ NIM power supply connector +12 V @ 1.0 A & -12 V @ 0.4 A

Note: Logic16 can be operated using either a DC power supply OR a NIM Crate.

⑨ External Clock Input 10 MHz external clock BNC input

⑩ JTAG Connector JTAG link cable (e.g. JTAG-cable Xilinx, Xilinx parallel cable, HS2 Digilent)

3.2 Safety of Operation
Ensure the module is operated vertically, and that the air is free to flow through the cooling vents

in the top and bottom sides of the unit.

Never operate the module horizontally, or with covered air vents - this could lead to overheating

and cause damage.

NIM crate power supply

The modules are designed for operation within a NIM crate that is powered with a properly rated

and installed power supply. In particular, in order to ensure safe operation of the logic module

and any connected instruments or computers, it is critical that the NIM crate and its power supply

are connected to electric ground through the power connector, as required by the local safety

standards.

DC power supply

Only use DC regulated power supply which meets the safety standards in your respective

country and/or legal jurisdiction.

We also strongly recommend that the DC power supply is grounded when in use.

Disclaimer:

Neither Universal Quantum Devices nor DotFAST Consulting are responsible for any harm or damage

caused to or by Logic16 or any connected devices or instruments, in the case that (a) the unit is operated

outside of a NIM crate or DC power supply and/or (b) is powered by an incorrectly installed NIM crate or

DC power supply.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 10

SPECIFICATIONS

Note: Users can switch between configuration A and B with a firmware update

TIMING Configuration A Configuration B

Time bin, digital 156.25 ps 78.125 ps

Time jitter (RMS) 71.6 ps 58.5ps

Dead time 5 ns† 5 ns†

Time tag filter window 156.25 ps 78.125 ps

Max. input delay 0 to + 40 μs†† (218 – 1 units) 0 to + 20 μs†† (218 – 1 units)

Input delay adjustment step 156.25 ps 78.125 ps

Coincidence window 0.156 ns – 2.6 ms
(224 -1 units)

0.078ns – 1.3 ms
(224 -1 units)

SYSTEM PERFORMANCE

Time tag rate burst rate 200 Mtags/s for up to 1024 events/channel

Sustained data rate (time tagger mode) ~ 11 M tags/s (USB 2.0)

Time tag processing rate, time tag filter mode ††† 190 M events/s

Max. on-board coincidence count rate 100 MHz (summed across all channels)

Input channel settings (for coincidence pattern definition) Tri-state: Active, Inactive, Ignore

Maximum number of simultaneously processed patterns > 43 million (316) > 6 thousand (38)

INPUTS

Number of inputs 16 8

Input definition SMA, 50Ω termination, DC coupled

I/P discriminator

Threshold range -2 V to +2 V , steps of 15 mV

Min. pulse amplitude 50 mV typical

Edge Detection Rising or Falling

Min. pulse duration
(above threshold)

300 ps

Max I/P level -2.5 V to + 5.0V

Counters 32-bit

GENERAL

Power NIM standard from crate: + 12V @ 1.0 A & -12V @ 0.5 A
OR
DC power supply: 12V @ 1.5A

Interface USB 2.0

OTHER I/O

External time base input * BNC, 10 MHz sine, 1KΩ, AC-coupled 1VPP

Outputs

Output definition SMA, 50Ω termination

Output signal TTL pulse, >2.5 V high, 100ns duration

Type: Pattern-detection triggered – No. of outputs 3 1

Type: Pulse generator – No. of outputs 1
†Double pulse time difference to guarantee capture of all consecutive pulses. Shorter double pulse time
differences will be capture probabilistically
†† The maximum detection rate without loss of data is 25 MHz (50 MHz) with a delay of 40 μs (20 μs) due
to the buffer of 1024 events / channel. Higher detection rates possible for shorter delays.
††† In filtering mode Logic-16 can process up to 190 Mtag/s internally to allow time of flight
measurements with respect to fast laser pulses.
* Note: Use of external time base makes channel 16 (8) inactive.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 11

3.3 Device Features

3.3.1 Active Edge and Threshold Detection

A detection event occurs when the active edge of an input signal reaches the user-defined threshold

voltage. The threshold level and the active edge (rising or falling) can be adjusted for each input,

individually. Logic16 uses detection events to determine when to tag time or take a count.

3.3.2 Time Tagger Mode

In this mode, Logic16 outputs a time tag when a detection event occurs on an input channel. This feature

is useful in time correlated single photon counting especially where absolute time tags are required. This

mode can be used for g2 (cross and auto correlation measurements), timing histograms, time of arrival/

time of flight, also for coincidence counting post processing. This mode could be applied in quantum

communication, quantum cryptology, quantum key distribution (QKD) as well as LiDAR and other time

correlation experiments.

Time is stored in the device as multiples of its internal timing resolution 156.25 ps or 78.125 ps for

Configuration A or B, respectively. Note that in Logic16 there is no designated “start” channel - the

reference time is that of the first tag, regardless of which input it was detected on. In other words, the

first signal detected will be recorded as occurring at time = 0.

In Time Tagger Mode, Logic16 offers modifiable filtering and gating. Employing these features will improve

maximum event rate, which is the rate at which assigning time tags to detection events can occur. Data

transfer rate, the rate at which time tags can be sent across the USB interface, is limited to the USB

connection. As a result, maximum data transfer rate is always 11 MHz.

Table 3-I summarizes the use and rates of relevant for each filtering option.

 Max. event
rate

Max. data
transfer rate Use when…

 (MHz, across all inputs)

Continuous 11 11 - All time tags must be recorded
Time Tag
Filter

190 11 - Pump or trigger rate > 10 MHz, but only relevant
TOF tags are needed (trigger and signal)

- Measuring for long periods of time (e.g., days)
and only multi-photon events are needed

Edge Gate 190 11 - Heralding events by a <= 10 MHz source
Level Gate 190 11 - Adjustable gate open with specific times

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 12

Continuous
Logic16 streams absolute time tags from ALL detected signals directly to the host PC without any

filtering or gating.

Figure 3-I Continuous time tagging: Three different signals, S1 (rising edge;
V1), S2 (falling edge; V2) and S3 (falling edge; - V3) are time tagged
concurrently. All pulses are being tagged.

Time Tag Filter
The Time Tag Filter can be used to effectively reduce the bandwidth required to perform certain

measurements. For example, it can enable time of flight (TOF) measurements with respect to fast

trigger signals (up to 190 MHz), which is too high rate to be recorded in continuous time tag mode.

This is possible so long as the photon detections of interest do not exceed the data transfer rate

(11 MHz). The Time Tag Filter can also be used to reduce data file size when recording photon

events for long periods of time (e.g., days), in cases where only multi-photon events are of

interest.

The filter transmits tags only when signals appear in groups. The user must define the minimum

number of tags required within a group and the maximum time that can separate adjacent time

tags. A group may contain an arbitrary number of tags greater than or equal to the minimum

number, as long as the time gap between any two tags is less than the defined maximum time. It

is therefore important to be mindful that the maximum time must be less than the period of any

periodic signal input. If the maximum time exceeds the period of a signal, all events will be tagged,

as in continuous time tag mode.

Inputs can be excluded from the filter using an exception mask. In this case, the time tags on the

masked channel will always be transmitted, and not included in the filter. With the time tag filter

in use, Logic16 can time tag events at 190 MHz, distributed across all channels. Data transfer will

still occur at up to 11 MHz.

Caution: Using filter exceptions can cause time tags not to be transmitted in correct order. (e.g.
Time differences can be negative)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 13

Figure 3-II Time Tag Filtering: Signals S1, S2 and S3 are input on
Logic16. With Time Tag Filter minimum group number set to 2 and
maximum time as shown, only pulses with their active edge within the
filter are tagged.

Gating

Edge Gating

The Edge Gate trigger is located on input 8. This gate opens for a user-specified time, after there

is an active edge on input 8. The gate width should be less than the period of the trigger signal or

the results will be unreliable. The position of the gate can be adjusted to compensate for cable

delays and similar effects. This can be a negative and positive time interval.7

7 In configuration B, Logic16 input 8 does not time tag when using the external clock input (10

MHz). The edge gate can still be triggered on/off in this case with an input signal, however will

NOT time tag.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 14

 Figure 3-III Edge Gating: Signal S1 on input 8 triggers the edge gate
to open, when an active edge is detected. Only pulses with their
active edge within the gate are being tagged

Level Gating

The Level Gate trigger is located on input 9. When the signal on input 9 is higher than the specified

threshold voltage, tags are processed normally. When it is lower, the input signals are ignored.

Please note that the level gate signal has in internal jitter of 5 ns.

Disclaimer: Level gate starts 25ns before the trigger signal.

Figure 3-IV Level Gating: When Signal S1 on input 9 is higher than the
threshold voltage, it triggers the level gate open. Gate width is the same
as the high time of S1. Only pulses with their active edge within the gate
are being tagged. Note: there is an offset of ∼25 ns between when the
level gate starts and when trigger input is tagged.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 15

3.3.3 Logic mode

This mode allows users to count the occurrence of detection patterns and to output pattern-triggered

TTL pulses. Coincidence counting is used for bell tests and other entanglement experiments. Pattern

triggered outputs are useful with gated photon detection and telecom inGaAs detectors.

Logic Patterns (Coincidence Counting)
Logic Pattern Detection events are counted when input pattern conditions are met within the

coincidence window.

The Patterns are defined by choosing each input condition to be one of:

+ active: true if the input has an active edge within the coincidence window

̶ inactive: true if the input does NOT have an active edge within the coincidence window

while there is at least one active edge on another input

Ø ignore: true regardless of whether the input has an active edge or not

Each pattern must have a (+) on at least one input, otherwise it is ill-defined. Multiple patterns

can be counted concurrently on-board the unit.

The coincidence window is the maximum time from the first (+) detection to the last8 (+) in the

pattern detection event. When all logically selected conditions (+, −, Ø) are met within that

time window, the event is counted. Otherwise the event is not counted.

The user can modify the coincidence window (see specifications). Ideally there will not be more

than one (+) on a single input, within one coincidence window. If this occurs, a “DoubleError” flag

will be thrown.

Examples

In the descriptions below, M is the number of effective input channels 16 (8) for configuration A (B).

An example singles event (+1, Ø2… ØM) is shown in Figure 3-V.a: the pattern event is counted every time

there is an active edge (+) on input 1, while all other inputs are ignored.

An example coincidence event (+1, +2, Ø3 … ØM) is shown in Figure 3-V.b: the pattern event is counted

when both inputs 1 and 2 have an active edge within the same coincidence window.

An example anticoincidence event (+1, −2, Ø3 … ØM) is shown in Figure 3-V.c: the pattern event is counted

when there is an active edge on input 1 but not input 2, within the coincidence window.

8 If it is a singles event, the first and last detection are one and the same

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 16

Figure 3-V Pattern Processed Coincidence Counting: For the same two signal (on input 1 and 2), three pattern events are counted.
Here it is assumed that channels 3 to M are all set to Ø.

Pattern-Triggered Outputs
In Logic mode, the user can generate up to 3 (1) pattern-triggered outputs in Configuration A (B)9.

The output channels are accessible on the front panel of the unit (Output 1 – 3). These outputs

are triggered by detection events as defined in the Logic Pattern section, however, instead of

counting these patterns when they occur, registration of an event will trigger the output of a TTL

pulse. Each output can be set to its own, distinct pattern trigger.

Note that these patterns are also set independent from coincidence counting patterns. In other

words, the user can set any pattern to be counted and any other pattern to trigger an output.

Counting and pattern-triggered outputs can be used simultaneously.

For each event, Logic16 outputs 2.5 V high TTL pulses with a default delay of 350 ns from the first

detection within the coincidence window. The pulse width is adjustable.

9In configuration B, Outputs 2 and 3 are not operational

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 17

3.3.4 Delay

Logic16 enables user to define individual delays for each input channel. This feature is very useful in the

logic mode, where the delays of individual channels can be fine-tuned to maximize coincidence signals.

3.3.5 Function Generator

Logic16 has its own simple function generator located on Output 4. Frequency and duty cycle can be

adjusted. The cycle time and high time can be adjusted in 5 ns increments, from 10 ns to 1.3 sec.

Note: The function generator always uses the internal frequency reference and not the external 10 MHz

signal.

3.3.6 External Clock Input

The external clock 10MHz input can be used for local synchronization to access more change for even

larger multi-photon experiments as well as long distance synchronization, e.g. in quantum communication

(including Quantum cryptography and quantum key distribution).

The 10 MHz input is located on the rear side of the device. It can be used to increase the stability of long-

term measurements by connecting a stable clock source. The input is AC coupled. For this reason it can

be driven by a variety of digital signals. As long as the corresponding 10 MHz error flags do not raise, the

time base can be considered as valid. When using digital signals the rise and fall time should be greater

than 5 ns to avoid ringing.

Levels: There are two possibilities to drive the 10 MHz input:

Note: Use of external time base makes channel 16 inactive in configuration A and channel 8 inactive in

configuration B.

 Level Termination

Sinus 1 Vpp nominal 1 kΩ internal

Digital Minimum level 500 mVpp External 50 Ω termination required

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 18

3.4 Firmware Update/Change
The following section outlines how to perform firmware updates and changes. For best results it is

important that the Logic16 Unit is running the latest FPGA firmware. The same procedure for updates is

used to switch from Configuration A to B, or vice versa. Tip: You can check the firmware version quickly

using Timetag Explorer10.

You need the following items:

 Logic16 Unit
 Small Phillips or flathead screw driver
 JTAG link cable (e.g. JTAG-cable Xilinx, Xilinx parallel cable, HS2 Digilent)
 Xilinx Lab Tools – iMPACT (Free download from http://www.xilinx.com/downloads)

o Find and download latest ISE Design Tools available for your PC under Vivado
(HW Developer) in ISE Archive.

o Follow setup instructions given by Xilinx and ensure Xilinx iMPACT is
accessible.

 Firmware PROM files provided by UQD (found in the CD drive provided)
 Time Tag Explorer (optional)

Perform the following procedures to update/change the Firmware:

i Connect Logic16 to PC with a JTAG Cable

Modules manufactured after January 2015: connect JTAG Cable to the designated

JTAG connector found on the rear of the device.

Modules manufactured before January 2015: remove the right-hand side panel

(unscrew). Connect the JTAG Cable to the FPGA board and then to your computer.

ii Connect device to a power supply .

Connect Logic16 to a DC power supply (12 V @ ≥1.5 A) or a NIM crate (12 V @ 1.0 A

and -12V @0.4 A). The ports are found on the rear side of the device.

10 Upon connection, it will appear in the window on the Time Tag Explorer’s TimeTag tab

http://www.xilinx.com/downloads

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 19

iii Run the program “Xilinx iMPACT” and connect iMPACT to device

Once the program is running, a prompt will appear to create a new project. Click
“yes”. Select “Configure devices using Boundary-Scan (JTAG)” and then click “OK”.
Once connection has been established with Logic16, another prompt will appear to
Auto Assign the configuration files. Click “No”. Choose “Cancel” if a further window
appears.
Note: An error may pop up if Logic16 is not powered on. Make sure power LED is on
when trying to connect to the device.

iv Assign new configuration file

iMPACT will display two devices. Only the first will have its firmware updated. Right

click on the first device (xcf08p) and choose “Assign new configuration file”. Choose

the desired file .mcs file under “Firmware” from the CD drive provided with the

device. i.e. “Timetag_230_06_highres.mcs”. Once selected, right click again on this

device and choose “Program”. The device programming properties will open. Select

the checkmark beside "Verify" and click "OK". Once done, iMPACT will display

“Program Succeeded”.

v Close iMPACT and disconnect Logic16

Close iMPACT, power down the device, and disconnect the Xilinx Parallel Cable. If

the side panel had been detached for this process, secure it back on the device. The

firmware update is complete.

vi Reboot and confirm firmware update was correct

Reconnect power to the Logic Unit to reboot the device, then check firmware

version with Time Tag Explorer (or your own program).

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 20

Section 4

Software Interface

4.1 Drivers Installation
Logic16 comes with .NET drivers for Windows and C++ drivers for Windows and Linux.

4.1.1 Windows 8 or higher

Devices with FPGA version greater than 2.17 do not need a driver installed on Windows 8.

Plug in the device and the driver loads automatically.

Caution: Do not connect a device with firmware version below 2.17 to a computer

running Windows 8. Windows stores the presence of an automatic driver in the

registry. When it doesn’t find a driver on the first attempt, it will never ask the device

again.

4.1.2 Pre Windows 8

i. Extract the Zip file with the USB driver

ii. Plug the unit into the NIM crate or DC power supply

iii. Connect the unit to the computer using a USB cable

iv. Power on the NIM crate

v. When prompted, choose manual driver selection

vi. Navigate to the folder with the extracted files and open the sub folder “USB Driver“

vii. The driver is installed and the device is ready for use.

4.1.3 Linux

Linux C++ drivers for Intel processor 32 and 64 bit are provided. Linux 32 bit on ARM is provided for test

purposes and is not guaranteed to run on all ARM environments.

On Linux, copy libtimetag32.so or libtimetag64.so to your lib directory. If you have not already done so,

get the g++ compiler and libusb development version.

sudo apt-get install g++-4.6-multilib

sudo apt-get install libusb-1.0-0-dev

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 21

4.2 Graphical User Interface
UQDevices provides two different GUI for users for ease of using Logic16: Timetag Explorer or

UQDevices Logic16 Correlation Counter. They both use the ttinterface.dll file provided in the CD driver

to operate.

4.2.1 Timetag Explorer

TimeTag explorer provides a general interface where you can access all functionalities of the

device as well as collect basic data without the need for coding.

Setup of Timetag Explorer

Prerequisites

Before installing Timetag explorer, please take sure that the following

components are installed on your computer:

 Microsoft .NET Framework 4.0 (The “Client Profile” version will do)
It can be downloaded here:

www.microsoft.com/en-

US/download/details.aspx?id=17718

 Microsoft Visual C++ 2010 Redistributable Package
It can be downloaded here:

www.microsoft.com/en-US/download/details.aspx?id=5555

NOTE: The links in the start menu are renamed each installation. You can have

several versions of TimeTag Explorer and ttInterface.dll at the same time.

Installation

We recommend using the latest version of Time Tag Explorer found within CD

driver provided. It is located under Applications > TimeTagExplorer. Choose the

Release folder that fits your PC (34 bit or 64 bit). Open up Time Tag Explorer by

click on the .exe file.

Older versions of the software are located within “Legacy” folder under

TimeTagExplorer.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 22

Using Timetag Explorer

Connect

Once the Time Explorer window is open, click connect to establish a connection with the device.

The USB LED on the device should light up. Note: all other functions is disabled until a

connection is achieved.

Calibrate

Click “Calibrate” to calibrate the unit. This operation needs about 4-10 seconds to complete.

Calibration should be done before any other feature is selected.

Note: Intrinsic delays of each input may vary after the calibration procedure is performed.

DC Calibrate

DC calibration is a useful feature when triggering very small signals near zero. DC Calibration

only has to be done only once for each unit. Before starting DC calibration please make sure

that all inputs have zero voltage. This is done best by disconnecting all SMA connectors.

 Then press the button “DC Cal”.

 The following dialog appears. Press “Ok”

After a few seconds the calibration is completed and the calibration data is saved to disk.

The unit number is encoded in the file name. When there are several units connected to one

computer, each unit load its correct correlation data. This is true as long as you don’t change

the USB wiring.

 Figure 4-I Time Tag Tab in Time Tag Explorer

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 23

TimeTag tab

This tab contains the very basic operation modes.

 ReadTags

Select “ReadTags” to start reading tags. The right hand side window displays the channel

number and the time difference to the previous time value. The first tagged received is time

zero.

 Use10MHz

Select this to connect to the external timing reference. When no appropriate signal is

connected on the rear side of the device, an error flag is shown.

 Display Interval/ms

Enter the value of time interval (in ms) you would like to observe on the display window.

 Filter

FilterMinCount: Enter the minimum number of tags required in one group.

When the value is 1, all tags are transmitted.

FilterMaxTime: Enter the maximum time interval (ns) between any two tags

within a group. Ensure the value is less than period of any of the

input signals, or else all tags will be transmitted.

Note: A group be of arbitrary length as long as there is no time gap greater than the specified

maximum time.

FilterExceptions: Click on the corresponding channel number to mark them with

“+”. All Inputs marked with a “+”are excluded from the filter.

They are always transmitted. (e.g. 1pps pulse)

Caution: Using filter exceptions can cause time tags not to be transmitted in correct order.

(e.g. Time differences can be negative)

ExceptionMask: This value is changes automatically when Filter Exceptions is changed.

This is the value to be transmitted to SetFilterExceptions().

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 24

Figure 4-II Save Tag tab

SaveTags tab

This tab can be used to store the time tags to an ACSII file. To improve the transmission rate,

the data is written to a temporary file first. This way the full data rate can be saved to disk. The

names of the temporary file and the output file can be entered in the two corresponding text

boxes. The path can be a relative or an absolute path. When the directory is not present, it is

created.

Clicking the “Save” button initiates the capturing of the data. Data is saved until the “Stop”

button is pressed. Alternatively one can enter a time limit. In that case data is saved for a

predefined amount of time, e.g. 2 sec. After pressing “Convert” the temporary file is converted

to a text file.

By choosing “IncrementName” the temporary filename is automatically changed each time

“Stop” is pressed. This features is particularly useful in conjunction with the “ConvertList”

feature.

The “Convert List” feature automatically converts all temporary files in a certain folder. The

folder and the file extension are taken from the “Temp File” text box. The text box just has to

link to one temporary file. “Convert List” automatically converts all files.This feature is also quite

helpful when saving a list of temporary files using the API (e.g. using LabVIEW)

File Format

The data can be stored in text or binary data format.

Text Format: The converted text file contains the channel number [1...16] and the

corresponding time. They are separated by a tab character. The time is stored as multiples of

the internal timing resolution. The reference time is the time of the first tag. In case of an

overflow, a special tag 28 is inserted in the data stream.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 25

Example: (1 MHz on channel 1)

1 0

1 6399

1 12799

1 19199

1 25598

1 31998

1 38397

1 44797

1 51197

1 57595

1 63995

1 70394

1 76794

Binary file format: The binary format contains a series of 9 byte records. The first byte is the

channel in the range of [1...16]. The next 8 bytes contain a long integer containing the time in

internal units. The time starts at 0.

Raw file format: The user can choose to process the raw file format without converting it. Note,

this format could change in future versions. The raw file format is a series of 32 bit integers.

Each integer is divided in two fields:

Channel: The cannel is encoded in the bits [31...26]. It is in the range of [0...15]. Values higher

than 15 have a special meaning, see below.

Special channel numbers

 0x1f Dummy - Please ignore

 0x1e High bit - Bits [51...26] of the following tag

 0x1d Overflow - At this position some data is missing

 0x10-0x1c Reserved - Please ignore

Time: The low bit of the time value are encoded in the bits [25...0]. The high bits of the time

value have to be reconstructed by user software.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 26

Input Tab

 Name

In this text box a name can be assigned to each input. This is optional.

 Level

This is the threshold voltage of the input.

 Edge

The “Edge” checkbox toggles the relevant edge. If not selected, the positive edge is relevant.

 Active

When the input has an active level, the color of this field turns to blue. The active level

depends on the selected edge. When using positive edge, the active level is high.

 Input Frequency

This shows the single frequency of the respective input. This value is displayed regardless

whether the “logic” functionality is enabled or not. Please note: The two sets of values are

measured over a different time period and therefore the result can differ slightly.

Logic Tab

This tab is only available with the UQD devices that include the special “Logic” feature. It allows

testing and studying of some of the coincidence features of the logic, like measuring single and

coincident detections from arbitrary channels, and adjusting delays between channels. The

output on the right side gives the single count rates per cycle time and in thousands per second

(kHz) for each Input channel and, below, the count rates for the arbitrary coincidence
patterns.

 Use Logic

Check off to start using logic mode

 Store MinMax
Check off to show maximum/minimum kHz

 Approx. Cycle time

The software tries to read the data with this measurement time. Because of computer

processing time, the actual cycle time is different. This time Cycle/ms is displayed on the

right and changes slightly. Only the actual cycle time is used to calculate detection rates.

 Coincidence Window

Enter the maximum time from the first detection to the last detection in the coincidence

event. When all logically selected detections occur within that time window, then the event

is counted. Otherwise the event is not counted.

 Coincidence Patterns

Each line of buttons defines one coincidence event. Clicking on the button changes the state

of the corresponding input. You can set up to 16 patterns simultaneously.

+ The input must have an active edge in the coincidence window for the event to be counted.

- The input must not have an active edge in the coincidence window for the event to be counted.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 27

Figure 4-III Time Tag Explorer Logic Tab: showing single and coincidence counts

Output Tab

This tab lets user access the Outputs 1-3 (configuration A) or Output 1 (configuration B) on the

device. UseLogic must be checked off in logic tab first in order to access Output functions.

 Output Width/ns

Enter the value of desired pulse high time in ns.

 Output Event Count

Enter the number of events you expect to occur in one 5 ns time slice under worst-case

conditions. Increasing the value by one will increase the delay of the outputs by 10 ns.

 Output Coincidence Pattern

Set coincidence pattern by clicking on the button to change the state of the corresponding

input.

+ The input must have an active edge in the coincidence window for the event to be counted.

- The input must not have an active edge in the coincidence window for the event to be

counted.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 28

Figure 4-IV Output tab displaying pattern-triggered outputs

Gate Tab

 SoftwareGateOn

Software gate should be activated at all times.

 UseLevelGate

Check off to start level gating. The checkbox LevelGateActive is automatically

checked, when the gate signal is high.

 UseEdgeGate

Check off to start edge gating. Specify the preferred length of in GateWidth (ns). The

position of the gate can be adjusted to compensate cable delays and similar effects.

Note: that the gate position can be a negative and positive time interval.

Figure 4-V Gate Tab

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 29

Delay Tab

This tab allows the user to define individual delays for each input channel.

This feature is very useful in the logic mode, where the delays of individual channels can be fine-

tuned to maximize coincidence signals.

Figure 4-VI Delay Tab

FG Tab

This tab allows user to access the function generator located on Output 4. The cycle time and high

time can be adjusted in 5 ns increments. The actual frequency and duty cycle is calculated and

output below the text boxes. The values can be adjusted from 10 ns to 1.3 sec.

 Period

Enter period of pulses in 5 ns increments

 High time

Enter pulse width required in 5 ns increments

 Pulse count

Enter the number of pulses required. 0 generates infinite pulses.

Note: The function generator always uses the internal frequency reference and not the external

10 MHz signal.

Figure 4-VII Function Generator

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 30

Histogram

 Use Histogram
Check off to start creating a histogram

 Accumulate

Check off for a cumulative histogram

 Start Channel

Enter the start channel #

 Stop Channel

Enter the stop channel #

 Time offset

Enter amount of time to offset in resolution time increments.

Figure 4-VIII Histogram Tab

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 31

4.2.2 UQD Logic16 Correlation Viewer

Correlation Viewer provides a general interface where you can access Logic Mode directly. This

is helpful if you require coincidence counting.

Figure 4-IX UQD Logic16 Correlation Viewer

Setup of UQD Logic 16 Correlation Viewer
File location: CD Folder>applications>uqd_apps> UQD_correlation_viewer_V0.31_Bin_>

UQD_correlation_counter.exe

Using UQD Correlation Viewer

Parameters

Adjust Input parameters here by changing the following functions.

 Tune channel #

Enter which channel you would like to adjust (You also do this by clicking the channel in the

Channel Setting display).

 Threshold [V]

Enter the threshold level in voltage of your input. Click All to apply the change to all inputs.

 Delay [ns]

Enter amount of time to delay an input signal. Click All to apply the change to all inputs.

 Polarity

Select which edge of the signal you will like to detect, Positive Edge (rising) or

Negative Edge (falling). Click All to apply the change to all inputs.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 32

 Configurations

 Revert Default: Click to reset the patterns to default

 Set as Default: Click set the current configuration of patterns to default

 Load From…: Click to load saved setting of patterns

 Save As… : Click to save current configuration as a file to access later on

 FG On/Off

Click ON or OFF to turn on or off the Function Generator. Adjust the Period/5 ns

and Wid/5 ns by entering the desired amount in the designated text box.

 Connect

Click to connect to Logic16. If you have multiple units connected to the PC, you can select

the unit you want to connect by editing Unit Nr.

 Status display

Shows the status of your device. Any error message will also be shown here.

 Singles display

Shows the count on each input.

Pattern Settings

Set patterns for coincidence counting using the numbers on the left side. Each number represents

an input channel. To set patterns, click the button beside the numbers. You have the following

options:

This is the default option. This indicates the device will ignore the associated input.

This indicates the device will count every time there is an active edge on the associated

input.

This indicates the device will count every time there is not an active edge on the

associated input.

You can set up 64 different patterns. Under Pattern Settings, you can view the list

of patterns available you can click on each pattern and adjust them individually. Figure #

shows examples of a few patterns.

 Coinc Window [ns]

Enter/adjust number to indicate the preferred coincidence window in ns.

 Adjust Pattern #

Enter/select the pattern # you want to adjust. You can also do this by clicking the

corresponding pattern on the list in Pattern Settings display.

 Count time [s]

Enter count time here to adjust. Since it may sometimes take longer or shorter time,

Actual Count Time displays the real time for each count. Roughly it will be close to

what is indicated by the user.

 Coincidences display

Shows the counts based on the patterns defined by user.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 33

Log Logic data to CSV file

 Click Me To Set CSV File

Click to choose where to save CSV file and name it. Then, click Log Logic Data to

CSV and then Start Saving Data to CSV. Once you’re done collecting your

data, click Saving…Click to Stop.

Correlation Histogram

Click “Correlation Historgram” button to open correlation histogram window. Here you can

acquire a histogram of time tags of your inputs. Histograms settings such as number of bins, bin

size, etc. can be adjusted on the right hand side panel. The histogram is display on the left hand

side. The raw data is previewed under “CSV Histogram Preview”.

Figure 4-X Correlation Histogram Window

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 34

4.3 Application Programming Interface (API)
Logic16 has a sophisticated software interface with built-in multi-processing support. One processor

handles USB communication and time-tag preprocessing. The other processor(s) is (are) free for

user handling of the read tags (storage / real time calculation).

Logic16 is accessible through a variety of programs. Using the ttInterface.dll (.Net) file provided in

the CD, users can program Logic16 in C#, LabVIEW, Visual Basics, MATLAB and Python. C++ is also

accessible with headers provided.

Disclaimer: Before accessing the .dll file on an API, ensure it is unblocked. To do this right-click on

the .dll file, go to "Properties" and under "General", check off "Unblock". Otherwise, Windows will

prevent the library to load.

4.3.1 .NET Setup

.NET assemblies can be integrated in most programming environments, including LabVIEW and

C#. The software interface is contained in the class ttInterface that is present in the file

ttInterface.dll. The .dll file can be found in the CD driver provided under the folder named

“TimeTagExplorer” within applications. This is only available for Windows.

LabVIEW
Once a new Labview project is opened, create a contruct node to access the ttInterface.dll. You

can do so by clicking on the node and browse to file location. Then create and connect an invoke

node to access all objects and methods within the file.

Note: ttInferface.dll uses .NET framework 4.0 which is not officially supported by older versions

of LabVIEW. But it still works because none of the 4.0 features is actually used.

To use 4.0, the following configuration file is required:

The configuration file must be placed next to LabVIEW.exe and must be named

LabVIEW.exe.config. The following example instructs LabVIEW to load the CLR 4.0:

<configuration>

<startup useLegacyV2RuntimeActivationPolicy="true">

<supportedRuntime version="v4.0.30319"/>

</startup>

</configuration>

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 35

Figure 4-XI LabVIEW: Accessing ttInterface.dll through a constructor node.

Visual Studio (C# and Visual Basic)
Once you create a new project, access ttInterface.dll by adding reference (under “Project” tab).

Browse to select ttInterface.dll from the CD driver.

Figure 4-XII Visual Studio: Add ttInterface.dll as a reference in order access all objects and methods

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 36

Simple C# Demo Source Code

The demo source code is a very simple C# project that shows the basic usage of the time tag

interface. The project file is “SimpleTimetagDemo.sln”. It can be opened with Microsoft Visual

Studio 2010. The “Express” version of Visual Studio will also work.

This simple program fragment shows how to use the interface:

ttInterface = new TTInterface(); //Create object
ttInterface.Open(1); //Open device No 1

ttInterface.Calibrate();

ttInterface.StartTimetags(); //Start measurement

byte[] channels;

long[] times;

int count = ttInterface.ReadTags(channels, times);

ttInterface.StopTimetags();

ttInterface.Close();

On error conditions, an exception of type TimeTag.UsbException is thrown.

Python
In Python, the .NET functions are accessible using the Pythonnet package.

UQD_Logic_Python_Frequency_Analzyer.py is a simple example that shows how to use the UQD

logic, both in Logic counting mode, as well as time-tagging mode.

Note: For speed and performance consider using other platforms such as C# or VB.

To access the ttInterface.dll file in python, include the following into your code. Modify the file

path as necessary.

import time

import sys

#please change paths to the location of ttInterface.dll

sys.path.append("C:\\Users\\Work\\Documents\\UQD\\TTexplorers\\TT

Explorer_2_28_32bit")

import clr

clr.AddReference("C:\\Users\\Work\\Documents\\UQD\\TTexplorers\\T

TExplorer_2_28_32bit\\ttInterface")

from System import Array, Byte, Int16, Int32, Int64, UInt32, UInt16

from TimeTag import TTInterface, Logic, UsbException

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 37

4.3.2 C++ Setup

 A C++ interface is available for Windows as well as Linux. The Windows interface is compiles

using Microsoft Visual Studio 2013. The files are contained in the folder “CTimeTag”.

File Description

include\CTimeTag.h General header file

include\CLogic.h Header file for Logic special functions

Win32\CTimeTagLib.lib

Win32\CTimeTagLibDebug.lib

Windows 32 bit

Win64\CTimeTagLib.lib

Win64\CTimeTagLibDebug.lib

Windows 64 bit

Linux\libtimetag32.so Linux 32 bit

Linux\libtimetag64.so Linux 64 bit

Simple C++ Program
#include <stdio.h>

#include <stdlib.h>

#include "../CTimeTag/Include/CTimeTag.h"

#include "../CTimeTag/Include/CLogic.h"

using namespace TimeTag;

CTimeTag timetag;

timetag.Open(1); //Open device No 1

timetag.Calibrate();

timetag.StartTimetags(); //Start measurement

 unsigned char *chan;
 long long *time;
 int count= timetag.ReadTags(chan, time);
timetag.StopTimetags();

timetag.Close();

On error conditions, an exception of type TimeTag::Exception is thrown.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 38

How to use the C++ Demo Source Code
To use the demo program, just copy the two Folders “CppDemo” and “CTimeTag” into the

same parent folder.

Windows:

On Windows, open CppDemo.sln using Visual Studio 2010 and compile.

Linux:

On Linux, copy libtimetag32.so or libtimetag64.so to your lib directory. If you have

not already done so, get the g++ compiler and libusb development version.

sudo apt-get install g++-4.6-multilib

sudo apt-get install libusb-1.0-0-dev

Then navigate to the CppDemo folder and type “make CppDemo32” or “make

CppDemo64”

To run the program, you need administrator privileges.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 39

4.3.3 API Methods

Objects

TTInterface()

This is for programs using ttInterface.dll (.NET). TTInterface() must be initialised in order to access all

functions required to operate the device.

Syntax:

C# myTagger = new TTInterface();

VB myTagger = New TTInterface()

Python myTagger = TTInterface()

Logic (myTagger)

This is for programs using ttInterface.dll (.NET). The constructor takes a ttInterface object which

must be already created, and creates a Logic object. The ttInterface object can already be opened

or not. (Logic Mode)

Syntax:

C# myLogic = new Logic(myTagger);

VB myLogic = New Logic(myTagger)

Python myLogic = Logic(myTagger)

CTimeTag

This class is only for C++, which must be initialised in order to access all functions required to operate the

device.

Syntax:

C++ CTimeTag timetag;

CLogic

This class is only for C++, which must be initialised in order to access all functions required for correlation

counting (Logic Mode).

Syntax:

C++ CLogic logic(timetag);

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 40

Basic Functions

Open(Number)

This function connects to the device. It has to be called before any other function is called.

Number >=1 The parameter is used only when more than one units are

connected at the same time.

If only one unit is used, this value must be set to 1

Syntax:

C# myTagger.Open(int Number);

C++ timetag.Open(int Number);

Calibrate()

The calibration function increases the accuracy of the device. It needs 4-10 seconds to execute. When the

calibration is used, it should be the first function to be called after the “Open” function.

Note: Intrinsic delays of each input may vary after the calibration procedure is performed.

Syntax:

C# myTagger.Calibrate();

C++ timetag.Calibrate();

Close()

This function should be called before the program terminates.

Syntax:

C# myTagger.Close();

C++ timetag.Close();

SetLedBrightness(int percent)

The Brightness of the LED on the front panel can be changed.

Syntax:

C# myTagger.SetLedBrightness(int percent)

C++ timetag.SetLedBrightness(int percent)

GetFpgaVersion()

This function returns the current version of the FPGA design. It is used for debugging purposes only.

Syntax:

C# myTagger.GetFpgaVersion()

C++ timetag.GetFpgaVersion()

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 41

GetResolution()

This function returns the time resolution of the device. It should be used to calculate absolute time

values. The function returns either 78.125E-12 or 156.25E-12 seconds.

Syntax:

C# myTagger.GetResolution()

C++ timetag.GetResolution()

GetNoInputs()

This function returns the number of inputs installed on the device. It is used for debugging purposes only.

Syntax:

C# myTagger.GetNoInputs()

C++ timetag.GetNoInputs()

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 42

Setup Functions
SetInputThreshold(int input, double voltage)

Syntax:

C# myTagger.SetInputThreshold(int input, double voltage)

C++ timetag.SetInputThreshold(int input, double voltage)

SetInversionMask(int mask)

The inputs are edge sensitive. The positive edge is used as standard. With this function the relevant edge

can be changed to the negative edge. The mask is coded binary. When the corresponding bit is high, the

negative edge is used. The corresponding bits are bits 16 to 1. Bit 0 is unused.

Syntax:

C# myTagger.SetInversionMask(int mask)

C++ timetag.SetInversionMask(int mask)

SetDelay(int input, int delay)

All input signals can be delayed internally. This is useful to compensate external cable delays.

Input [1..16] Number of the input to change.

Delay 18 bit value Delay in internal units. (See GetResolution())

Syntax:

C# myTagger.SetDelay(int input, int delay)

C++ timetag.SetDelay(int input, int delay)

SetFG(int period, int high)

This function defines the rectangular signal on connector output 4. Both values are defined in units of 5
ns. The maximum width of both values is 28 bit which gives a maximum time of about 1.3 sec. Example:
SetFG (20, 10) gives 10 MHz and 50 % duty cycle.

Syntax:

C# myTagger.SetFG(int period, int high)

C++ timetag.SetFG(int period, int high)

Input [1..16] Number of the input to change.

Voltage [-2.0..2.0] Threshold voltage in volt

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 43

Use10MHz(Boolean use)

When the 10 MHz input is switched on, but no valid signal is connected to the input, an error flag is set

and the error led on the front panel is lit.

Note: When using the 10 MHz reference, input 16 on the 156.25 ps devices and input 8 on the 78.125 ps

devices cannot be used.

Syntax:

C# myTagger.Use10MHz(bool use)

C++ timetag.Use10MHz(bool use)

FreezeSingleCounter()

This function stores all the single counters synchronously. This function also returns the time

between the last two calls to FreezeSingleCounter. The time is expressed in 5 ns ticks.

Syntax:

C# myTagger.FreezeSingleCounter()

C++ timetag.FreezeSingleCounter()

GetSingleCount(int input)

This returns the number of input pulses in between the last two calls of FreezeSingleCounter.

This example calculates the frequency of input 4:

int time = FreezeSingleCounter();

int pulses = GetSingleCount(4);

double frequency = 200e6 * pulses / time;

Syntax:

C# myTagger.GetSingleCount(int input)

C++ timetag.GetSingleCount(int input)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 44

TimeTag Mode
In this mode, the internal ram is used as a fifo. The tags are transmitted to the computer by a background

thread. With this configuration, very high transmission rates can be achieved. At an internal fifo overflow,

the DataOverflow flag is set and the error led on the front panel is lit.

StartTimetags()

This function puts the device into time-tag readout mode. The time tags are written into the internal fifo.

The background thread starts to read the time tags into the RAM of the computer.

Syntax:

C# myTagger.StartTimetags()

C++ timetag.StartTimetags()

StopTimetags()

The tags are no longer written into internal fifo. The background thread is stopped.

Syntax:

C# myTagger.StopTimetags()

C++ timetag.StopTimetags()

ReadTags(channel, times)

This returns value: size of arrays. Time[n] is the absolute time in internal units (78.125 or 156.25 ps).

Channel [n] is the number of the corresponding input. The first input is number 1. The array is sorted by

time. When two tags occur at the same time, then the tag with the smaller channel number is transmitted

first. The arrays can be used until the next call of ReadTags. When the data is needed for a longer time it

has to be copied to a different array. The array is allocated by the driver software and returned to user

code with an out parameter. Returning with an out parameter is similar to returning values by a pointer

or reference in C / C++;

The “virtual channel” 30 is used for the overflow tag. The overflow tag is sent whenever a data overflow

error occurs. The data overflow tag indicates, that some data is missing at this point.

When there are no tags present, this function may wait up to 300 ms before it returns a zero result. When

you don’t want this behavior, use TagsPresent() to check availability first.

Syntax:

C# myTagger.ReadTags(out byte[] channels, out long[] times);

C++ timetag.ReadTags(unsigned char * channels, long long *times)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 45

TagsPresent()

This function returns true when tags are ready to read. This function is optional.

Syntax:

C# myTagger.TagsPresent()

C++ timetag.TagsPresent()

Time Tag Filter

When the time-tag filter is on, the time-tags are transmitted only, when they appear in groups. This

feature helps to reduce the USB bandwidth and PC load. The filter is able to process rates of up to 190

MHz.

SetFilterMinCount(int MinCount)

This function defines the minimum size of a group to be transmitted. MinCount can be set between 1 and

10 counts. Setting MinCount to 1 switches the filter off, all tags are transmitted.

Syntax:

C# myTagger.SetFilterMinCount (int MinCount)

C++ timetag.SetFilterMinCount (int MinCount)

SetFilterMaxTime(int MaxTime)

MaxTime defines the maximum time between two pulses in the same group. When the time between two

pulses is bigger than “MaxTime”, the two pulses are considered to be in different groups. MaxTime is

given in internal units.

Example: When FilterMinCount is 10 and FilterMaxTime is 1 μs, then the maximum possible group size

would be 9 μs.

Syntax:

C# myTagger.SetFilterMaxTime (int MaxTime)

C++ timetag.SetFilterMaxTime (int MaxTime)

SetFilterException(int exception)

Some inputs can be excluded from the filter. Excluded inputs are always transmitted. They do not

participate in groups. The filter exceptions are bit-coded. To exclude Input n from the filter, set the bit n-

1 in the exception mask.

Examples:

0 No exceptions

1 Input 1 excluded

2 Input 2 excluded

3 Inputs 1 and 2 excluded

4 Input 3 excluded

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 46

Syntax:

C# myTagger.SetFilterExceptions (int Exceptions)

C++ myTagger.SetFilterExceptions (int Exceptions)

Level Gate

When the voltage on the gate Input is higher than the threshold voltage, then the device operates

normally: The time tags of all inputs are stored in internal RAM and transmitted via USB. When

the voltage is below the threshold voltage, then the input signals are ignored and no tags are

stored in internal RAM. The threshold voltage is the voltage of channel 9.

This feature is not present in all devices. This input has jitter and timing resolution of 5 ns.

UseLevelGate(bool)

False: Normal operation, the gate input will be ignored.

True: Level Gate Operation, tags are stored only when the gate input is high.

Syntax:

C# myTagger.UseLevelGate (bool)

C++ timetag.UseLevelGate (bool)

LevelGateActive()

Returns true, when the gate input is above the input threshold

Syntax:

C# myTagger.LevelGateActive()

C++ timetag.LevelGateActive()

Edge Gate

This gating offers fine grained timing control and very low jitter. The width of the gating window

can be adjusted in steps of the internal resolution. The position of the gate can be adjusted too.

This offers very flexible control of the gate.

The gate is opened a fixed time after the active edge of input 8. This fixed time can be set with
SetDelay(8, delay);

The rising edge is the standard active edge. This can be change by SetInversionMask();

A negative gate delay is possible too. To achieve this, the delay of input 8 must be set to 0 and

the delay of all other inputs must be set to the magnitude of the desired delay value. The gate is

open for a fixed time interval. This interval can be adjusted in in internal units.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 47

UseTimetagGate(bool use)

This function switches edge sensitive gating on or off.

Syntax:

C# myTagger.UseTimetagGate(bool use)

C++ timetag.UseTimetagGate(bool use)

SetGateWidth(int duration)

This function sets the width of the gate. The parameter duration is given in internal units.

Syntax:

C# myTagger.SetGateWidth(int duration)

C++ timetag.SetGateWidth(int duration)

Save to file

The software interface offers a high performance interface to save data to disk. The data is saved in a

compressed, binary format and can be converted to ASCII offline. This way the full rate of 11 MHz can be

saved to disk on a modern computer.

It is best explained by an example:

Saving:

TTInterface tti= new TTInterface();

tti.Open()

TimeTagReader r= tti.GetReader();

r.StartSaving(“rawdatafile.tt”);

//Wait some time

//Monitor r.SavedTags when you like

r.StopSaving();

tti.Close();

Converting

TTInterface tti= new TTInterface();

TimeTagReader r= tti.GetReader();

r.StartConverting(“rawdatafile.tt”, “tags.txt”);

r.WaitUntilConversionFinished();

For converting you don’t have to call Open() and you don’t even have to have a unit connected.

Of course you can do the conversion right after StopSaving().

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 48

Conversion Mode

The generated file can be either text or binary. Binary mode is selected by r.SetConversionBinary

(true). The default is text mode.

The interface functions are located in the dll ttInterface.dll. There is also support for C++, both for

Windows and Linux environments.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 49

Logic mode

SwitchLogicMode()

This method must be called before the other logic functions can be used.

Syntax:

C# myLogic.SwitchLogicMode()

C++ logic.SwitchLogicMode()

SetWindowWidth(int window)

This method sets width of the coincidence window. The parameter window is given in internal units

(156.25 ps or 78.125 ps). The window width can be set as high as 224-1.

Syntax:

C# myLogic.SetWindowWidth(int window)

C++ logic.SetWindowWidth(int window)

ReadLogic()

This method reads the counter out of the device. The return parameter is not needed (used for debug

purposes only). The data is automatically stored in the Logic object for later processing. This method can

be called any time after calling SwitchLogicMode(). The time between calls to ReadLogic()

defines the measurement time interval of the captured data.

Note: The device uses a double buffered memory system. The new measurement starts immediately and

is running in the background during the call to ReadLogic(). For this reason not a single pulse is omitted

during readout.

Syntax:

C# myLogic.ReadLogic()

C++ logic.ReadLogic()

CalcCount(int pos, int neg)

This method operates on the data read by the last call to ReadLogic(). It calculates how often a certain

event pattern has occurred in the last measurement interval. The parameters pos and neg are bit coded.

The rightmost bit corresponds to input 1, the next to input 2, and so on.

The parameter pos is given by the integer value of the binary number defined by the bit coded

Coincidence Event. It defines the inputs that must have an active edge in the coincidence window for the

event to be counted, with range [0..65535].

The parameter neg defines the inputs that must have no active edge in the coincidence window for the

pattern to be counted. The parameter neg is optional, with range [0..65535].

Syntax:

C# myLogic.CalcCountPos(int pos)

C++ logic.CalcCountPos(int pos)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 50

pos neg pos Coincidence Pattern Coincidence Event

1 0 0000000000000001 Singles of input 1

2 0 0000000000000010 Singles of input 2

4 0 0000000000000100 Singles of input 3

8 0 0000000000001000 Singles of input 4

3 0 0000000000000011 Coincidence of input 1 and 2

7 0 0000000000000111 Coincidence of inputs 1, 2, and 3

3 4 0000000000000011 Coincidence of inputs 1 and 2 without interaction of input 3

CalcCountPos(int pos)

This method equals CalcCount except that the neg parameter is always 0. It has better run time.

Syntax:

C# myLogic.CalcCountPos(int pos)

C++ logic.CalcCountPos(int pos)

GetTimeCounter()

The time counter measures the time between the last two calls to ReadLogic. The result is given in

multiples of 5 ns. The time when ReadLogic() is called will vary over time because of the limited realtime

performance of personal computers. The correct count rates can be obtained when the count values from

CalcCount are divided by the result from GetTimeCounter().

Syntax:

C# myLogic.GetTimeCounter()

C++ logic.GetTimeCounter()

Outputs

SetOutputEventCount(int events)

This function is an advanced feature that can be used to fine tune the delay of the outputs. Roughly

speaking, events is the number of events you expect to occur in one 5 ns time slice under worst-case

conditions.

Increasing the value by one will increase the delay of the outputs by 10 ns. With the standard setting of 5

the output delay will be 350 ns.

When the input rate is too high for the given event count, the OutTooLate Error Flag will be raised. No

output pulse will be generated in this condition. There is never an output pulse generated in the wrong

timing. For this reason OutTooLate is more a kind of warning, not a hard error condition. It just means

that not all pulses are generated.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 51

Hint: When two events occur at the exact same time, the event coming from the input with the smaller

input number will be processed first. For this reason input 1 has a slightly better real time performance

than input 16.

Syntax:

C# myLogic.SetOutputEventCount(int events)

C++ logic.SetOutputEventCount(int events)

SetOutputPattern(int output, int pos, int neg)

This function sets the pattern of the output pulses based on the input coincidence events. The parameter

output identifies which output to change, with range [1..3].

The parameter pos is the bit coded value of the Coincidence Event of the inputs that must be present,

with range [0..65535] as for CalcCount.

The parameter neg is the bit coded value of the Coincidence Event of the inputs that must not be present,

with range [0..65535].

Method Call Result

SetOutputPattern(1, 1, 0) Output 1 fires when input 1 is present

SetOutputPattern(2, 6, 0) Output 2 fires when inputs 2 and 3 are present
within the coincidence window

SetOutputPattern(3, 6, 8) Output 3 fires when inputs 2 and 3 are present and
input 4 is not present at the same time

Syntax:

C# myLogic.SetOutputPattern(int output, int pos, int neg)

C++ logic.SetOutputPattern(int output, int pos, int neg)

SetOutputWidth(int width)

This function defines the length of the generated output pulses. The parameter is given in 5 ns increments.

The maximum value is 255.

Syntax:

C# myLogic.SetOutputWidth(int width)

C++ logic.SetOutputWidth(int width)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 52

Errors

ReadErrorFlags()

This function returns the internal error flags.Calling this function clears the flags in the device.

Syntax:

C# myTagger.ReadErrorFlags()

C++ timetag.ReadErrorFlags()

GetErrorText (int flags)

This function translates the error flags to a short text that can be displayed on the user interface.

Syntax:

C# myTagger.GetErrorText(int flags)

C++ Timetag.GetErrorText(int flags)

Flag No
Mask

Value
Flag Name

0 1 DataOverflow

An overflow in the 512 k values SRAM FIFO has been

detected. The time-tag generation rate is higher than

the USB transmission rate.

1 2 NegFifoOverflow Internal reason, should never occur

2 4 PosFifoOverflow Internal reason, should never occur

3 8 DoubleError
One input had two pulses within the coincidence

window.

4 16 InputFifoOverflow
More than 1024 successive tags were detected with a

rate greater 100 MHz

5 32 10MHzHardError
The 10 MHz input is not connected or connected to a

wrong type of signal.

6 64 10MHzSoftError
The 10 MHz input is connected, but the frequency is

not 10 MHz.

7 128 OutFifoOverflow Internal error, should never occur

8 256 OutDoublePulse

An output pulse was generated, while another pulse

was still present on the same output.

The pulse length is too long for the given rate.

9 512 OutTooLate

The internal processing was too slow. This is because

the output event queue is too small for the given rate.

Increase the value with SetOutputEventQueue()

28 OutOfSequence

This is an internal error generated in the PC software.

It is generated when the tags are not sorted correctly.

Plase contact factory.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 53

4.3.4 Sample Codes

Visual Basic
Minimal implementations of Logic functions

These implementations consist of a small but useful script that opens the Coincidence Logic Unit, sets

some parameters, and reads once the single and coincidence counts on channels one and two.

Imports TimeTag

Public Class Form1

 Dim myTagger As TTInterface
 Dim mylogic As Logic
 Dim Resolution As Double
 Dim Errors As Integer

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load
 Dim Singles1, Singles2, Coincidences As Integer
 Dim FPGA_v, TimerCounter As Double

'open connection to device

myTagger = New TTInterface

myTagger.Open()

 'get some basic info and display
 Resolution = myTagger.GetResolution()
 FPGA_v = myTagger.GetFpgaVersion()
 MsgBox("FPGA Version: " & FPGA_v.ToString & vbCrLf & _

"Timing Resolution: " & Resolution.ToString & " s" &

vbCrLf & vbCrLf & vbCrLf & _
 vbTab & vbTab & "Start Measurment Now?")

'set input thresholds for channel 1 and 2

myTagger.SetInputThreshold(1, 0.3)

myTagger.SetInputThreshold(2, 0.3)

'initiate logic mode

mylogic = New

Logic(myTagger)

mylogic.SwitchLogicMode()

'conicidence window (in units of 156ps)

mylogic.SetWindowWidth(20)

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 54

'count events for 1 sec:

'take a first snapshot of counters

mylogic.ReadLogic()

 'delay thread for about 1sec
 Threading.Thread.Sleep(1000)

'take second snapshot of counters

mylogic.ReadLogic()

 'how long was the true measurement time between the two

ReadLogic comands? Given in multiples of 5ns,

therfore we multiply by this unit to obtain sec
TimerCounter = mylogic.GetTimeCounter() * 0.000000005

'retrive observed counts for singles 1,2 and

coincidences 12

singles1 = mylogic.CalcCountPos(1)

singles2 = mylogic.CalcCountPos(2)

coincidences = mylogic.CalcCountPos(3)

 'show data
 MsgBox("Measurment Time: " & vbTab & vbTab &
TimerCounter.ToString("F4") & " s" & vbCrLf & _
 "Singles Channel 1:" & vbTab & vbTab &

Singles1.ToString & vbCrLf & _
 "Singles Channel 2:" & vbTab & vbTab &

Singles2.ToString & vbCrLf & _
"Coincidences Chs 1&2: " & vbTab & Coincidences.ToString)

 Close()

 End Sub

 Private Sub Form1_FormClosing(sender As Object, e As

FormClosingEventArgs) Handles Me.FormClosing
 MsgBox("Thanks for testing the counter. Bye")

' close connection to device

myTagger.Close()

 End Sub

End Class

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 55

LabVIEW Sample Program

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 56

Multi-Channel LabView Implementation of logic functions

This description is based on the LabView VI logic-ver.vi (current ver is 217) and sub-VI generate logic

pattern2.vi. Below is the standard front panel.

Thresholds

Thresholds allows the voltage threshold to be set for each channel. Two standard voltages are NIM and

TTL.

Delays

Delays allows the delay for each channel in nanoseconds to be set, in order to align coincident counts

between channels. The delays can only be set to multiples of the Coincidence Logic Unit’s resolution.

Counts

Counts displays the number of events in the last Measurement Time corresponding to a given logic

pattern.

Logic Pattern

Logic Pattern is the pattern of coincidences to report in counts. Channel 1 is the leftmost button and

channel 6 is the rightmost (expand the control to see more channels). Green means an event on the

channel must be present, red means an event on the channel must not be present, and black means to

ignore the channel. For example, the first three patterns in the above screenshot are for single counts on

channel 1, single counts on channel 2, and coincident counts between channels 1 and 2, respectively.

STOP

Always use the STOP button, rather than LabView’s Abort Execution so that the connection to the

Coincidence Logic Unit is closed correctly.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 57

Other settings

One Measurement Only, when enabled, returns the counts for only one Measurement Time, and then

stops execution (otherwise measurements run continuously). This is useful, for example, when changing

settings between each measurement.

Time tagger Resolution reports the resolution of the Coincidence Logic Unit in nanoseconds.

Coinc. Window controls the time window in nanoseconds within which counts on different channels are

counted as coincident.

Actual Coinc. Window reports the coincidence window actually used in nanoseconds, which must be a

multiple of the Coincidence Logic Unit’s resolution.

Measurement Time chooses the time in seconds between reading the Coincidence Logic Unit’s buffer,

meaning Counts are displayed as summed over the Measurement Time.

Actual Measurement Time reports the real time in seconds between reading the Counts, due to finite

processing time of the PC.

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 58

Section 5

FAQ

What additional equipment do I need to connect my single photon detector to Logic16 ?

Nothing! (Just an SMA connector)

Standard single photon detectors output TTL pulses and these are easily read by the Logic16

through its SMA inputs (no need for a TTL-to-NIM converter).

 To be registered as an event on Logic16, the TTL pulses must endure for at least 300 ps above the

(user-set) discriminator threshold. The inputs have a discriminator range of +/- 2.0V, but can

tolerate a signal range of more than +/- 3.0V without issue.

 For standard (gated) infrared photon detectors, consider using the integrated pulse generator and

coincidence-triggered outputs to control gating!

How can I switch between the Logic16 Configuration A (156 ps, 16-channel) and B (78

ps, 8-channel)?

Switching configurations requires updating the firmware of the FPGA that is housed within the Logic16

unit. This can be done by the user in-lab, but not during a measurement.

How can I record time-tags over many hours in my multi -photon experiment, without

accumulating excessively large data files?

Use the time-tag filter. By transferring data only after a set number of tags accumulate within a given

time window, one can dramatically reduce the amount of data being transferred to the host PC. The

photon-triplet experiments in Phys. Rev. Lett. 118, 153602 (2017) – arxiv:1609.07508 – stored filtered

time-tag data over 20 h, using Logic16 units in time-tagging mode.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.153602
https://arxiv.org/pdf/1609.07508.pdf

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 59

If the maximum transfer rate is 10 MHz, how can I use the logic unit for time -resolved

measurements with a higher rate pulsed laser?

Using the time-tag filter with a filter width just less than the period of the laser, Logic16 will only

transfer those time tags for which a detection occurred. One can use, e.g. a 80 MHz Ti-Sapphire laser,

and only transfer events of interest (detection events + corresponding laser signals).

What if I don’t need ALL the possible correlatio n patterns in coincidence counting

mode? Can I select specific ones?

Yes. Logic16 pre-sifts all possible coincidences that occurred within a given time window and transfers

the meta data to the PC. The PC will receive information about all possible correlations and

the driver will extract only coincidences requested by the user.

What software is available? Can it be customized?

 Time Tag Explorer – test installation and operation of the Logic16. This is to be used for initial set-up

trouble-shooting, but does not provide data acquisition (saving) capability.

 UQD Logic Counter – basic coincidence counting and data recording

 Customization – UQDevices suggests that experimentalists develop a customized data acquisition

software in their preferred DAQ environment (LabView, C#, Matlab, etc.). If you have questions,

requests or feedback regarding available software please contact us.

Does the Logic16 unit come with a power supply?

No. The unit has an input port for a DC power supply (12V/≥1.5 A) or can be powered by NIM crate (+

12V/1A , -12V/0.5A). An example of a compatible DC power supply is here.

Can two or more Logic16 units be used together to increase the number of channels

Yes. One can use n x Logic16 units to effectively obtain n*15 channels.

This is accomplished by syncing the units using a time reference signal. To do so, split a time reference

signal (e.g. 1 kHz signal from a function generator) and input this reference into one channel on each

unit. For example, two Logic16 units were used to employ 30 channels to time-tag a SPAD array in the

following experiments:

– Opt. Express 24, 20947-20955 (2016), arxiv.org:1606.04110

–J. Appl. Phys. 116, 143101 (2014), arxiv:1406.4245

http://uqdevices.com/contact-us/
https://canada.newark.com/xp-power/afm30us12c2/ac-dc-converter-external-plug/dp/85W2885?st=AFM30US12
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-18-20947
https://arxiv.org/abs/1606.04110
https://aip.scitation.org/doi/10.1063/1.4897296
https://arxiv.org/abs/1406.4245

w w w . u q d e v i c e s . c o m L o g i c 1 6 U s e r M a n u a l | 60

Section 6

Revision History

Date Document Version FPGA Version Dll Version Remark

2019-12-20 3.0 2.30 2.30 User Manual Version 3.0 is a
combination of Time Tag User
Manual 2_3 and Logic User
Manual 1_5_2.

