

Logic Functions for

Coincidence Logic Unit

User Manual

Version 1.5

Universal Quantum Devices

295 Hagey Boulevard, 1st Floor, West Entrance

Waterloo, ON, Canada N2L 3G1

Phone: +1 519 404 6844 Email: info@uqdevices.com Url: www.uqdevices.com

Empowered by

Thomas Lehner, Dotfast Consulting

Logic Extension User Manual Page 2 / 11

Table of Contents
Table of Contents ... 2	

Revision History ... 2	

Timetag Explorer Interface ... 3	

Logic Tab ... 3	

Aprox. Cycle time ... 3	

Coincidence Window ... 3	

Coincidence Patterns .. 3	

Delay Tab ... 4	

Software Interface .. 4	

Initialization ... 4	

Counter Read Out ... 5	

Outputs .. 6	

LabView Implementation of logic functions .. 7	

Thresholds ... 10	

Delays .. 10	

Counts ... 10	

Logic Pattern .. 10	

STOP .. 10	

Other settings .. 10	

Revision History

Date Document

Version

FPGA
Version

DLL
Version

Remark

14.08.10 1.0 Initial revision

19.05.11 1.1 2.14 Put logic functions into separate dll

Definition of SetOutputPattern() changed

26.1.12 1.2 Defined output delay

22.3.12 1.3 Add information about Timetag Explorer

09.10.13 1.4 2.17 2.17 Update information about new drivers

19.02.14 1.5 2.17.3 2.17.1 Add description of standard implementation and
LabView and Visual Basic code.

Logic Extension User Manual Page 3 / 11

Timetag Explorer Interface
Logic Tab

This tab is only available with the UQD devices that include the special “Logic” feature. It
allows testing and studying of some of the coincidence features of the logic, like measuring
single and coincident detections from arbitrary channels, and adjusting delays between
channels. The output on the right side gives the single count rates per cycle time and in
thousands per second (kHz) for each Input channel and, below, the count rates for the
arbitrary coincidence Patterns.

Aprox. Cycle time

The software tries to read the data with this measurement time. Because of computer
processing time, the actual cycle time is different. This time Cycle / ms is displayed on the
right and changes slightly. Only the actual cycle time is used to calculate detection rates.

Coincidence Window

Here the width of the coincidence window is defined. This is the maximum time from the
first detection to the last detection in the coincidence event. When all logically selected
detections occur within that time window, then the event is counted. Otherwise the event is
not counted.

Coincidence Patterns

Each line of buttons defines one coincidence event. Clicking on the button changes the role
of the corresponding input.

+ The input must have an active edge in the coincidence window for the event to be counted.

- The input must not have an active edge in the coincidence window for the event to be
counted.

Logic Extension User Manual Page 4 / 11

Delay Tab

This tab allows the user to define individual delays for each input channel.

This feature is very useful in the logic mode, where the delays of individual channels can be
fine-tuned to maximize concidence signals.

Software Interface
The interface functions are located in the dll ttInterface.dll. There is also support for C++,
both for Windows and Linux environments.

A normal implementation of the Logic mode proceeds as follows:

Create a TTInterface object, open the TTInterface using method Open(), then create a Logic
object and call method SwitchLogicMode(). Next use the TTInterface object to get the
time resolution of the Coincidence Logic Unit with GetResolution() and set the count
thresholds for each channel with SetInputThreshold(). Back in the Logic object, set the
delays for each channel with SetDelay(int input, int delay) and set the coincidence
window with SetWindowWidth(int window), both in units of the time resolution. The
logical pattern of counts to be recorded should be set up also (see description under
CalcCount). Now, in a repeating loop, call ReadLogic() to capture data and
CalcCount(int pos, int neg) or CalcCountPos(int pos) to return the number of
counts for each logical pattern. The loop can be delayed to count for a certain time interval,
and use GetTimeCounter() to find the actual counting time for each loop, which will be
slightly longer than the set delay due to computer processing time. After the counting loop
is complete, close the TTInterface object with Close() to end the session.

Initialization

public Logic(ttInterface t)

Logic Extension User Manual Page 5 / 11

The constructor takes a ttInterface object which must be already created, and
creates a Logic object. The ttInterface object can already be opened or not.

public void SwitchLogicMode()

This method must be called before the other logic functions can be used.

public void SetWindowWidth(int window)

This method sets width of the coincidence window. The parameter window is given in
internal units (156.25 ps). The window width can be set as high as 224-1.

public void SetDelay(int input, int delay)

This method sets the virtual delay line for each channel. The parameter delay is
given in internal units (156.25 ps).

The parameter input identifies the channel and ranges from 1 to 16.

Counter Read Out

public int[] ReadLogic()

This method reads the counter out of the device. The return parameter is not needed
(used for debug purposes only).

The data is automatically stored in the Logic object for later processing.

This method can be called any time after calling SwitchLogicMode(). The time
between calls to ReadLogic() defines the measurement time interval of the captured
data.

The device uses a double buffered memory system. The new measurement
starts immediately and is running in the background during the call to
ReadLogic(). For this reason not a single pulse is omitted during readout.

public int CalcCount(int pos, int neg)

This method operates on the data read by the last call to ReadLogic(). It calculates
how often a certain event pattern has occurred in the last measurement interval.

The parameters pos and neg are bit coded. The rightmost bit corresponds to input 1,
the next to input 2, and so on.

The parameter pos is given by the integer value of the binary number defined by the
bit coded Coincidence Event. It defines the inputs that must have an active edge in
the coincidence window for the event to be counted, with range [0..65535].

The parameter neg defines the inputs that must have no active edge in the
coincidence window for the pattern to be counted. The parameter neg is optional,
with range [0..65535].

Logic Extension User Manual Page 6 / 11

pos Coincidence
Pattern

pos neg Coincidence Event

0000000000000001 1 0 Singles of input 1

0000000000000010 2 0 Singles of input 2

0000000000000100 4 0 Singles of input 3

0000000000001000 8 0 Singles of input 4

0000000000000011 3 0 Coincidence of input 1 and 2

0000000000000111 7 0 Coincidence of inputs 1, 2, and 3

0000000000000011 3 4 Coincidence of inputs 1 and 2 without
interaction of input 3

public int CalcCountPos(int pos)

This method equals CalcCount except that the neg parameter is always 0. It has
better run time.

public int GetTimeCounter()

The time counter measures the time between the last two calls to ReadLogic. The
result is given in multiples of 5 ns.

The time when ReadLogic() is called will vary over time because of the limited
realtime performance of personal computers. The correct count rates can be
obtained when the count values from CalcCount are divided by the result from
GetTimeCounter().

Outputs

public void SetOutputWidth(int width)

This function defines the length of the generated output pulses. The parameter is
given in 5 ns increments. The maximum value is 255.

public void SetOutputPattern(int output, int pos, int neg)

This function sets the pattern of the output pulses based on the input coincidence
events.

The parameter output identifies which output to change, with range [1..3].

The parameter pos is the bit coded value of the Coincidence Event of the inputs that
must be present, with range [0..65535] as for CalcCount.

The parameter neg is the bit coded value of the Coincidence Event of the inputs that
must not be present, with range [0..65535].

Logic Extension User Manual Page 7 / 11

public void SetOutputEventCount(int events)

This function is an advanced feature that can be used to fine tune the delay of the
outputs. Roughly speaking, events is the number of events you expect to occur in
one 5 ns time slice under worst-case conditions.

Increasing the value by one will increase the delay of the outputs by 10 ns. With the
standard setting of 5 the output delay will be 350 ns.

When the input rate is too high for the given event count, the OutTooLate Error
Flag will be raised. No output pulse will be generated in this condition. There is never
an output pulse generated in the wrong timing. For this reason OutTooLate is more
a kind of warning, not a hard error condition. It just means that not all pulses are
generated.

Hint: When two events occur at the exact same time, the event coming from the
input with the smaller input number will be processed first. For this reason input 1
has a slightly better real time performance than input 16.

Minimal implementations of logic functions
These implementations consist of a small but useful script that opens the Coincidence Logic
Unit, sets some parameters, and reads once the single and coincidence counts on channels
one and two.

Visual Basic

Imports TimeTag

Public Class Form1

 Dim myTagger As TTInterface
 Dim mylogic As Logic
 Dim Resolution As Double
 Dim Errors As Integer

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load
 Dim Singles1, Singles2, Coincidences As Integer
 Dim FPGA_v, TimerCounter As Double

 'open connection to device
 myTagger = New TTInterface
 myTagger.Open()

Method call Result

SetOutputPattern(1, 1, 0) Output 1 fires when input 1 is
present

SetOutputPattern(2, 6, 0) Output 2 fires when inputs 2
and 3 are present within the
coincidence window

SetOutputPattern(3, 6, 8) Output 3 fires when inputs 2
and 3 are present and input 4 is
not present at the same time

Logic Extension User Manual Page 8 / 11

 'get some basic info and display
 Resolution = myTagger.GetResolution()
 FPGA_v = myTagger.GetFpgaVersion()
 MsgBox("FPGA Version: " & FPGA_v.ToString & vbCrLf & _

"Timing Resolution: " & Resolution.ToString & " s" & vbCrLf
& vbCrLf & vbCrLf & _

 vbTab & vbTab & "Start Measurment Now?")

 'set input thresholds for channel 1 and 2
 myTagger.SetInputThreshold(1, 0.3)
 myTagger.SetInputThreshold(2, 0.3)

 'initiate logic mode
 mylogic = New Logic(myTagger)
 mylogic.SwitchLogicMode()

 'conicidence window (in units of 156ps)
 mylogic.SetWindowWidth(20)

 'count events for 1 sec:
 'take a first snapshot of counters
 mylogic.ReadLogic()

 'delay thread for about 1sec
 Threading.Thread.Sleep(1000)

 'take second snapshot of counters
 mylogic.ReadLogic()

 'how long was the true measurement time between the two ReadLogic

comands? Given in multiples of 5ns, therfore we multiply by
this unit to obtain sec

 TimerCounter = mylogic.GetTimeCounter() * 0.000000005

 'retrive observed counts for singles 1,2 and coincidences 12
 singles1 = mylogic.CalcCountPos(1)
 singles2 = mylogic.CalcCountPos(2)
 coincidences = mylogic.CalcCountPos(3)

 'show data
 MsgBox("Measurment Time: " & vbTab & vbTab &
TimerCounter.ToString("F4") & " s" & vbCrLf & _
 "Singles Channel 1:" & vbTab & vbTab & Singles1.ToString &

vbCrLf & _
 "Singles Channel 2:" & vbTab & vbTab & Singles2.ToString &

vbCrLf & _
 "Coincidences Chs 1&2: " & vbTab & Coincidences.ToString)

 Close()

 End Sub

 Private Sub Form1_FormClosing(sender As Object, e As
FormClosingEventArgs) Handles Me.FormClosing
 MsgBox("Thanks for testing the counter. Bye")

 ' close connection to device
 myTagger.Close()

 End Sub

End Class

Logic Extension User Manual Page 9 / 11

LabView

Logic Extension User Manual Page 10 / 11

Multi-Channel LabView Implementation of logic functions
This description is based on the LabView VI logic-ver.vi (current ver is 217) and sub-VI
generate logic pattern2.vi. Below is the standard front panel.

Thresholds

Thresholds allows the voltage threshold to be set for each channel. Two standard voltages
are NIM and TTL.

Delays

Delays allows the delay for each channel in nanoseconds to be set, in order to align
coincident counts between channels. The delays can only be set to multiples of the
Coincidence Logic Unit’s resolution.

Counts

Counts displays the number of events in the last Measurement Time corresponding to a
given logic pattern.

Logic Pattern

Logic Pattern is the pattern of coincidences to report in counts. Channel 1 is the leftmost
button and channel 6 is the rightmost (expand the control to see more channels). Green
means an event on the channel must be present, red means an event on the channel must
not be present, and black means to ignore the channel. For example, the first three patterns
in the above screenshot are for single counts on channel 1, single counts on channel 2, and
coincident counts between channels 1 and 2, respectively.

STOP

Always use the STOP button, rather than LabView’s Abort Execution so that the connection
to the Coincidence Logic Unit is closed correctly.

Other settings

One Measurement Only, when enabled, returns the counts for only one Measurement Time,
and then stops execution (otherwise measurements run continuously). This is useful, for
example, when changing settings between each measurement.

Timetagger Resolution reports the resolution of the Coincidence Logic Unit in
nanoseconds.

Logic Extension User Manual Page 11 / 11

Coinc. Window controls the time window in nanoseconds within which counts on different
channels are counted as coincident.

Actual Coinc. Window reports the coincidence window actually used in nanoseconds, which
must be a multiple of the Coincidence Logic Unit’s resolution.

Measurement Time chooses the time in seconds between reading the Coincidence Logic
Unit’s buffer, meaning Counts are displayed as summed over the Measurement Time.

Actual Measurement Time reports the real time in seconds between reading the Counts,
due to finite processing time of the PC.

